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Previous research into structural vibration transmission paths has shown that it is
possible to predict vibrational power transmission in simple beam and plate structures.
However, in many practical structures transmission paths are composed of more complex
curved elements; therefore, there is a need to extend vibrational power transmission analyses
to this class of structure. In this paper, expressions are derived which describe the vibrational
power transmission due to #exural, extensional and shear types of travelling wave in
a curved beam which has a constant radius of curvature. By assuming sinusoidal wave
motion, expressions are developed which relate the time-averaged power transmission to the
travelling wave amplitudes. The results of numerical studies are presented which show the
e!ects upon power transmission along a curved beam of: (i) the degree of curvature; and
(ii) various simplifying assumptions made concerning beam deformation.

( 2000 Academic Press
1. INTRODUCTION

Unwanted vibration in ships, aircraft and buildings is often caused by the operation of
machinery installed within the structure. The best method to reduce the unwanted vibration
is to modify the source and isolate it from the supporting structure. However, if the problem
persists the vibration transmission characteristics through the structure from the source
connection points to the area of unacceptable vibration levels must be examined, and
appropriate vibration control procedures undertaken. For example, Figure 1 shows
a typical machinery installation in a ship which consists of a machine mounted on
a suspension system which is attached to the main structure of the vessel. In addition to the
primary connection at the machinery seating, there will also be structural connections
through the pipework, control linkages and exhaust system and an acoustic connection
through the air or surrounding medium. Each of these connections provides a #anking path
for the vibrational energy. Thus minimizing the vibration transmission and ultimate noise
radiation from a machine will involve the investigation of several parallel transmission
paths. Vibrational power transmission analysis techniques allow the direction of
propagation of vibrational energy to be determined, and a magnitude to be assigned to each
path.
22-460X/00/230455#34 $35.00/0 ( 2000 Academic Press



Figure 1. A typical machinery installation in a ship.
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In order to characterize acoustic transmission paths, acoustic intensity measurement
methods have already been developed, and hence are not considered in this paper. Previous
research into structural transmission paths has shown that it is possible to predict
vibrational power transmission in simple beam and plate structures. More recently,
transmission through pipes with bends, branches and discontinuities has been studied [1],
which has led to useful design rules concerning the position and size of pipe supports for
minimum power transmission. However, in many practical structures transmission paths
are composed of more complex curved elements. Therefore, there is a need to extend power
transmission analysis to this class of structure.

Wave motion in a curved beam with constant radius of curvature has been considered by
Love [2], who assumed that the centreline remains unextended during #exural motion,
whilst #exural behaviour is ignored when considering extensional motion. Using these
assumptions the vibrational behaviour of complete or incomplete rings has been considered
by many researchers who are interested in the low-frequency behaviour of arches and
reinforcing rings [3]. In reference [2] Love also presented equations for thin shells which
include the e!ects of extension of the mid-surface during bending motion. Soedel [4]
reduced these to equations applicable to a curved beam of constant radius of curvature. In
an alternative approach, Gra! [5] derived these equations from "rst principles and also
constructed frequency-versus-wave number and wave speed-versus-wave number graphs.
Philipson [6] derived a set of equations of motion which included extension of the central
line in the #exural wave motion, and also rotary inertia e!ects. In a development analogous
to that of Timoshenko for straight beams, Morley [7] introduced a correction for radial
shear when considering the vibration of curved beams. Gra! later presented
frequency-versus-wave number and wave speed-versus-wave number data for wave motion
in a curved beam, when higher order e!ects are included [8]. More recently, Walsh and
White [9] presented formulae for the point and cross mobilities of &&semi-in"nite'' curved
beams based upon theoretical and experimental studies.

In this paper, expressions for vibrational power transmission in a curved beam are
derived from "rst principles. In the next section, two sets of governing equations for wave
motion in a curved beam are presented, both of which include coupled extensional-#exural
motion. The "rst set is based upon a reduction of Love's thin shell equations mentioned
above. The second set is based upon a reduction of FluK gge's thin shell equations [10]. In
section 3, the expressions for stresses and displacements presented in section 2 are used to
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derive formulae for vibrational power transmission in terms of centreline displacements. By
assuming sinusoidal wave motion, expressions are developed which relate the
time-averaged power transmission to the extensional and #exural travelling wave
amplitudes. In section 4, a correction for rotary intertia is introduced by allowing the
elements of the beam to undergo rigid-body rotation in addition to lateral translation. Later
in the section, it is assumed the elements of the beam are also subjected to radial shearing
stresses, and hence undergo shear deformation. The results of numerical studies of these
expressions are presented which show the e!ects upon wave motion and power
transmission of (i) the degree of curvature; and (ii) the various simplifying assumptions made
concerning the beam deformation.

2. WAVE MOTION IN CURVED BEAMS

2.1. INTRODUCTION

In this section the equations of motion for a curved beam are presented where the
centreline of the beam forms a plane of constant radius of curvature. The cross-section of
the beam is uniform and symmetrical about a plane and it is also assumed that there is no
motion perpendicular to the plane. It is also assumed that the beam material is linearly
elastic, homogeneous, isotropic and continuous. The results of two di!erent theories are
presented in this section, both of which can be classed into &&simple bending'' or &&thin-shell''
theories, and which include extension of the centreline during #exural motion. One set of
expressions can be obtained by reduction of Love's thin-shell equations [4, 10] and
converting from generalised curvilinear co-ordinates to polar co-ordinates; alternatively,
the expressions can be derived from "rst principles [5]. A second set of expressions can be
obtained by reduction of FluK gge's thin-shell equations [10]. Of the many di!erent shell
theories these two were chosen: (i) because they are two of the most widely used sets of
equations, and (ii) because expressions for vibrational power transmission in circular
cylindrical shells [11] and arbitrary shaped shells [12] have already been published based
upon FluK gge's and Love's equations respectively.

2.2. THE GOVERNING EQUATIONS

Consider a portion of a curved beam, as shown in Figure 2. The circumferential
co-ordinate measured around the centreline is s, while the outward pointing normal
co-ordinate from the centreline is z, and the general radial co-ordinate is r. A complete list of
notation is given in Appendix B. The centreline is de"ned as the locus of centroids of each
cross-sectional element. The tangential and radial displacements of a material point are
; (r, s, t) and = (r, s, t) respectively. For small displacements of thin beams the following
assumptions, known as &&Love's "rst approximation'' in classical shell theory, can be made
[10]:

(i) the thickness of the beam in the plane of curvature is small compared with other
dimensions, for example, the radius of curvature;

(ii) strains and displacements are su$ciently small so that second and higher order
magnitude terms in the strain}displacement relationships may be neglected in
comparison with "rst order terms;

(iii) the transverse normal strain is small compared to the other normal strains and may
be neglected;



Figure 2. Geometry of a curved beam.
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(iv) normals to the undeformed middle-surface remain straight and normal to the
deformed middle-surface and su!er no extension.

The fourth assumption is known as Kircho!'s hypothesis and imposes the following linear
relationships between the displacements of a material point and components of
displacement at the undeformed centreline:

; (r, s, t)"u(R, s, t)#z/(s, t), =(r, s, t)"w(R, s, t), (1a,b)

where u and w are the components of displacement at the centreline in the tangential and
radial directions, respectively, / is the rotation of the normal to the centreline during
deformation:
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and = is independent of z and is completely de"ned by the centreline component w.
Substituting equations (1a) and (1b) into the strain}displacement equations of
three-dimensional elasticity theory gives the following relation for total circumferential
strain:

e
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where e
s
is the in-plane (extensional) strain and b

s
is the bending strain (mid-surface change

in curvature). Equation (3) is the strain}displacement equation of FluK gge [10]. If the term
z/R in equation (3) is neglected with respect to unity in the denominator, the
strain}displacement equation of Love is obtained [10]. Since the radial stress component,
p
r{

is assumed negligible, the transverse strain, e
r{

is zero, and as a consequence of Kircho!'s
hypothesis the transverse shear strain, c

sr{
is zero.

Assuming the material to be linearly elastic, the circumferential and transverse
stress}strain relationships are given by Hooke's Law. But from Kircho!'s hypothesis the
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shear strain, c
sr{

is zero, thus the shear stress, p
sr{

is zero. However, these stresses cannot be
zero since they are related to the transverse shearing forces needed for equilibrium, which is
an unavoidable inconsistency in simple bending theory. From Hooke's Law, the radial
stress is given by p

r
"lp

s{
where l is the Poisson ratio, but Love's third assumption is that

p
r

is zero, which is another contradiction in the shell theory considered here. The
strain}displacement expressions and stress}strain equations of the Love- and FluK gge-based
theories are listed in Table 1.

Assuming the material to be homogeneous and isotropic, the Young's modulus, E, shear
modulus, G, and the Poisson ratio, l, can be treated as constants. Thus, by integrating the
stresses over the beam thickness, force and moment resultants are obtained. Although the
transverse shear stress, p

sr{
is zero, a nonvanishing shear resultant, Q, is de"ned as

the integral across the thickness of the transverse shear stress. The circumferential force, N,
bending moment, M, and shear force, Q, of the Love- and FluK gge-based theories are listed in
Table 2. Figure 3 shows the sign convention of force resultants on an elemental slice of
a curved beam.

Equations of motion for a curved beam are presented in reference [5]. These equations
are derived in terms of the radian parameter h. By applying the substitutions, s"Rh and
Lf/Ls"(1/R) (Lf/Lh), equations of motion are obtained which are expressed in terms of the
circumferential length, s. Alternatively, the equations of motion can be obtained from
Love-based equations for a cylindrical shell [10].

FluK gge-based equations of motion for a curved beam also assume the simplifying
assumptions of &&Love's "rst approximation''. However, because of the stage in the
derivation at which these approximations are introduced these equations also implicitly
assume that there is a shift of neutral axis location due to beam curvature. For this paper,
the FluK gge-based equations of motion were obtained by reduction of the equations of
motion for a circular cylindrical shell presented in reference [10]. The Love- and
FluK gge-based equations of motion are listed in Table 3.

An harmonic solution of the equations of motion can be obtained by assuming that
extensional and #exural sinusoidal waves propagate in the circumferential direction and
can be represented, respectively, by

w(s, t)"AI exp [i(ut!ks)], u(s, t)"BI exp [i(ut!ks)], (4,5)

where AI and BI are the complex wave amplitudes. Substituting these harmonic wave
expressions into the Love- and FluK gge-based equations of motion gives the harmonic form
of the equations of motion which are listed in Table 4.

2.3. COMPUTER SIMULATION

For a given real wave number, k, the harmonic equations of motion can be solved to "nd
the corresponding radian frequency, u, and complex wave amplitude ratio (BI /AI ). Both the
Love- and FluK gge-based sets of equations were solved using computer programs written in
the matrix analysis language MATLAB. The simulated beam was chosen to have the
material properties of typical mild steel strip beams used for laboratory experiments. The
material properties were

Young's modulus E"207)0]109 (N/m2),
Shear modulus G"79)6]109 (N/m2),

Density o"7850)0 (kg/m3).



TABLE 1

Displacement, strain}displacement and stress}strain equations for a curved beam

Quantity Love-based equations FluK gge-based equations Including rotary inertia Including shear deformation
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TABLE 2

Force resultants for a curved beam

Quantity Love-based equations FluK gge-based equations Including rotary inertia Including shear deformation
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Figure 3. Sign convention and force resultants on an elemental slice of curved beam.

TABLE 3

Equations of motion for a curved beam
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The beam thickness, h, was set at 10 mm and thus, approximately at the same thickness
(6}7 mm) as typical experimental beams. For ease of computation the beam width, b, was
set to unity (i.e., 1)0 m) rather than the more typical 0)05 m width of experimental beams,
since in the theoretical model it is assumed that there is no motion in the direction of the
width of the beam. Four di!erent radii of curvature were investigated, which were
represented in terms of the non-dimensional thickness to radius of curvature ratio, h/R.
These ratios were ( 1

10
, 1
100

, 1
1000

and 1
10,000

).

2.4. RESULTS

The solution of the Love- and FluK gge-based equations of motion for a curved beam was
obtained by substituting a given real-valued wave number into the equations of motion and,
hence, calculating the two real-valued radian frequencies. Based upon the Love equations of
motion, Figures 4 and 5 show the wave motion characteristics for the beam with the severest
thickness-to-radius of curvature ratio (i.e., h/R" 1

10
). Figure 4 shows the relationship

between wave number and frequency, where the frequency data have been plotted on the
horizontal axis and the wave number data have been plotted on the vertical axis. The
frequency range is represented in terms of the non-dimensional frequency parameter
X"uR/c

0
, where c

0
is the phase velocity of extensional waves in a straight bar and the

wave number range is represented in terms of the non-dimensional wave number, kR. It can
be seen that two types of wave exist: one involving predominantly #exural motion and the
other predominantly extensional motion. The predominantly extensional wave &&cuts-on''
when the non-dimensional frequency, X, is equal to one. This is the familiar &&ring
frequency'' of cylindrical shell dynamics, and is the frequency when the wavelength of
extensional waves in a straight rod is equal to the circumference, 2nR. It can be seen in
Figure 4 that above the ring frequency the dispersion relationship is essentially that of
quasi-longitudinal waves in a straight rod. For the predominantly #exural wave there is
a special root at zero frequency (and zero group velocity) when the non-dimensional wave
number, kR, is equal to one. This situation occurs when the wavelength of the
predominantly #exural wave is equal to the circumference, 2nR. For wave numbers of value
just less than the special root, kR"1, it can be seen in Figure 4 that there is a frequency
region where the dispersion curve of the predominantly #exural wave has negative slope
and, hence, negative group velocity. Although highly unusual, waves with negative group
velocity have also been predicted in cylindrical shell sections [13]. For non-dimensional
wave numbers of value less than kR"0)6 the dispersion curve reverts to a positive gradient.
For wave numbers of value greater than the special root, kR"1, it can be seen in Figure
4 that as the frequency increases the dispersion curve for the predominantly #exural wave
becomes increasingly like the dispersion curve of purely #exural waves in a straight
Euler}Bernoulli beam. As the frequency increases, a frequency is reached where both wave
types have the same wave number. This occurs when uK/c

0
"1, where K is the radius of

gyration of the beam. This is when the wavelength of extensional waves in a straight rod is
equal to 2n]radius of gyration of the curved beam (i.e., j

ex
"2nK). Dispersion curves for

the beams with the less severe thickness to radius of curvature ratios ( 1
100

, 1
1000

and
1

10,000
) showed a similar pattern of behaviour. Indeed, with an astute choice of

non-dimensional frequency axis then all four dispersion curves for a particular wave type
can be made to lie on the same line. For example, in Figure 4 a non-dimensional frequency
axis of X"uR/c

0
was chosen. In this case all four dispersion curves for the predominantly

extensional wave lie on the line marked with &&o'' symbols. Of course, when the data are
displayed against a dimensional frequency axis, such as cycles per second (Hz), then as the



TABLE 4

Harmonic form of the equations of motion for a curved beam

¸ove-based equations
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Shear deformation equations
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Figure 4. Non-dimensional wave number, kR, versus non-dimensional frequency, X"uR/c
0
, relationship for

a curved beam with a thickness to radius ratio of ( 1
10

) predicted using the Love- based theory: (#) predominantly
#exural travelling wave; (s) predominantly extensional travelling wave.

Figure 5. Wave amplitude ratio versus non-dimensional frequency, X"uR/c
0
, relationship for a curved beam

with a thickness to radius ratio of ( 1
10

) predicted using the Love-based theory: (#) wave amplitude ratio
(extensional amplitude/#exural amplitude) for a predominantly #exural travelling wave; (s) wave amplitude ratio
(#exural amplitude/extensional amplitude) for a predominantly extensional travelling wave.
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radius of curvature increases the beam behaviour becomes increasingly similar to that of
a straight beam or rod. In the limit, the dispersion curves approach the familiar straight
beam relationships illustrated in reference [5].

The predominantly #exural wave will involve extensional motion as well as #exural
motion. Conversely, the predominantly extensional wave will involve #exural motion
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as well as extensional motion. This wave amplitude relationship is shown graphically in
Figure 5, displayed over the same frequency range as used in Figure 4. The predominantly
#exural wave amplitude ratio is represented by the ratio of the extensional to #exural
motion, whilst the predominantly extensional wave amplitude ratio is represented by the ratio
of the #exural to extensional motion. It can be seen in Figure 5 that at the cut-on frequency,
X"1, the predominantly extensional wave is, in fact, dominated by #exural motion.
Similarly at the cross-over frequency, uK/c

0
"1, the predominantly extensional wave is

dominated by #exural motion. In the frequency region between these two points the wave is
dominated by an extensional motion. At the special root, kR"1, the predominantly #exural
wave consists of equal #exural and extensional motion. For non-dimensional frequencies
greater than the special root kR"1, as the frequency increases the wave becomes
increasingly #exural in nature until the cross-over frequency, uK/c

0
"1, when extensional

motion again dominates. For non-dimensional wave numbers less than kR"1, the
predominantly #exural wave contains greater extensional motion than #exural motion. The
relative phase angle between the #exural and extensional amplitudes, A and B, has not been
shown. However, inspection of the harmonic form of the equations of motion shows that for
real-valued frequencies and wave numbers the complex wave amplitudes AI and BI will di!er
by$i. Thus, the displacements have a relative phase angle of $903.

The corresponding characteristics of wave motion in curved beams were also investigated
using the FluK gge-based equations of motion. The simulated beams were given identical
dimensions and material properties as the beams used previously for the Love-based
analysis. The results of this investigation revealed that both theories predict the identical
wave behaviour in the low- and medium-frequency regions and that only slight di!erences
occur at high frequencies (in the frequency region near uK/c

0
"1).

3. VIBRATIONAL POWER TRANSMISSION IN CURVED BEAMS

3.1. THEORY

In this section the expressions for displacements and stresses presented in section 2 are
used to derive the structural intensity and power transmission due to #exural and
extensional travelling waves in a curved beam. The structural intensity expressions are
formulated in terms of displacements at the centreline. By assuming sinusoidal wave
motion, expressions are developed which relate the time-averaged power transmission to
the #exural and extensional travelling wave amplitudes. The e!ect of curvature upon power
transmission is investigated using the same four beams whose wave motion characteristics
were studied in section 2.

Structural intensity in the circumferential direction of a curved beam is given by [14]
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. (6)

By integrating across the beam thickness, power transmission per unit length in the
circumferential direction is obtained [15]:
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h@2
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s
dz. (7)

Substituting the circumferential stress}strain relation and Love's strain}displacement
expression into equation (7), the power transmission due to circumferential stress is
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obtained. (A full derivation is given in Appendix A). By analogy to power transmission in
a straight beam this is expressed in terms of an extensional component and a bending
moment component respectively:
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Although the transverse shear stress, p
sr{

is negligible under Love's "rst approximation,
the power transmission due to transverse shear stress can be evaluated from the
non-vanishing shear force, Q, because the radial displacement,=, does not vary across the
beam thickness. Again, by analogy to power transmission in a straight beam, this is
expressed as a shear force component:
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Thus, total power transmission in the circumferential direction is given by
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Using the FluK gge-based strain}displacement expression, equation (3), the following
power transmission expressions are obtained for the extensional, bending moment and
shear force components (a full derivation is given in Appendix A):
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The total power transmission in the circumferential direction is given by equation (11).
Equations (12) and (13) can be re-arranged by noting that the EI/R term in the extensional
component, equation (12), is exactly cancelled by an equivalent expression in the bending
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moment component, equation (13), giving modi"ed power transmission expressions:
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The total power transmission in the circumferential direction is given by the sum of
equations (14)}(16). For ease of reference these equations are also listed in Table 5.

To obtain a relationship between vibrational power transmission and the amplitude of
the waves travelling in the beam assume that extensional and #exural sinusoidal waves
propagate in the positive s direction and can be represented, respectively, by
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], (17)

u(s, t)"Re MBI exp [i(ut!k
B
s)]N

"B cos[ut!k
B
s], (18)

where h
A

is the relative phase angle between the #exural and extensional motions. As noted
in section 2.4 this relative phase angle is $903. Substituting the harmonic wave expressions
equations (17) and (18), into the Love-based power transmission equations (8)}(10) gives
expressions for the power transmission in the circumferential direction in terms of the
travelling wave amplitudes A and B, and the relative phase angle h

A
. The extensional,

bending moment and shear force components are, respectively,
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Similarly, substituting the harmonic wave expressions (17) and (18) into the FluK gge-based
power transmission expressions (14)}(16) gives the power transmission in terms of the



TABLE 5

Power transmission equations for a curved beam

Quantity Love-based equations FluK gge-based equations Including rotary inertia Including shear deformation
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travelling wave amplitudes A and B:
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The total power transmission is given by the sum of the extensional, bending moment and
shear force components.

So far, expressions have been developed for power transmission which are functions of
both position and time. For sinusoidal wave motion it is useful to develop time-averaged
power transmission de"ned by
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where ¹ is the period of the signal. Thus, the Love-based harmonic power transmission
equations (19)}(21) become
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Similarly, the FluK gge-based harmonic power transmission equations (22)}(24) become
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For a curved beam there is an interaction between the longitudinal and bending
deformations leading to coupled extensional}#exural wave motion. This is unlike the
situation for straight beams where purely longitudinal and purely #exural motion can exist
independently. Using the Love and FluK gge equations of motion for a curved beam it was
shown that two types of elastic wave exist, one involving predominantly extensional
motion, the other predominantly #exural motion. For a given harmonic wave of frequency,
u, and wave number, k, the equations of motion were solved to "nd the associated
extensional to #exural wave amplitude ratio (B/A) and relative phase angle h

A
. Thus, the



472 S. J. WALSH AND R. G. WHITE
time-averaged power transmission by a single harmonic wave is found by setting the wave
numbers k

A
and k

B
equal to k, say, and using the corresponding extensional to #exural wave

amplitude ratio. For the Love-based power transmission equations (26)}(28) this gives
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Similarly, time-averaged power transmission by a single harmonic wave using the
FluK gge-based equations (29)}(31) is given by
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Thus, the total time-averaged power transmission by a single elastic wave in the
circumferential direction is given by the sum of the extensional, bending moment and shear
force components. Equations (32)}(37) are also listed in Table 6.

3.2. RESULTS OF COMPUTER SIMULATION

The power transmission expressions (32)}(37) were programmed using the matrix
analysis program, MATLAB. The simulated beams were chosen to have the same
dimensions and material properties as those used in the study of wave motion in section 2.
Figure 6 shows the relationship between transmitted power ratio and frequency over the
same non-dimensional frequency range as investigated in section 2. For the predominantly
#exural wave the time-averaged transmitted power ratio is calculated by dividing the
time-averaged power transmitted along a curved beam by a predominantly #exural wave
(equations (32)}(34), with k"k

B
, the predominantly #exural wave number) by the

time-averaged power transmitted by a pure #exural wave travelling in a straight
Euler}Bernoulli beam:
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where SP
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f
, where k

f
is the wave number and A

f
, the wave amplitude of

a purely #exural wave in a straight beam. For the predominantly extensional wave the
transmitted power ratio is calculated by dividing the time-averaged power transmitted



TABLE 6

Equations for time-averaged power transmission by a single harmonic wave

Quantity Love-based equations FluK gge-based equations Including rotary inertia Including shear deformation
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along a curved beam by a predominantly extensional wave (equations (32)}(34), with k"k
A
,

the predominantly extensional wave number) by the time-averaged power transmitted by
a purely extensional wave in a straight rod:
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where SP
ex

T"ESuk
ex

B2
ex

. Considering "rst the power transmitted by the predominantly
extensional wave, it can be seen in Figure 6 that below the ring frequency, X"1, no power
is transmitted. This agrees with the results of section 2 where it was shown that below the
ring frequency there is no predominantly extensional travelling wave motion. Above the
ring frequency, but below the cross-over frequency, uK/c

0
"1, it can be seen that

the transmitted power ratio takes a value of 1)0. This indicates that the level of power
transmitted along a curved beam by a predominantly extensional wave is the same as the
level of power transmitted by a purely extensional wave travelling along a straight rod.
Above the cross-over frequency, uK/c

0
"1, there is a divergence from straight beam

behaviour. Considering now the power transmitted by the predominantly #exural wave, it
can be seen in Figure 6 that at low frequency the transmitted power ratio is greater than 1)0.
This indicates that more power is transmitted by a predominantly #exural wave travelling
in a curved beam than by a corresponding purely #exural wave in a straight
Euler}Bernoulli beam. However, as the frequency increases towards the ring frequency,
X"1, the transmitted power ratio reduces to 1)0. This indicates that a predominantly
#exural wave travelling in a curved beam and a purely #exural wave travelling in a straight
beam transmit the same amount of power. As the frequency increases this condition
continues until the cross-over frequency, uK/c

0
"1, is reached. Above the cross-over

frequency there is a divergence from straight beam behaviour.
Figure 6. Transmitted power ratio versus non-dimensional frequency, X"uR/c
0
, relationship for a curved

beam with a thickness to radius ratio of ( 1
10

) predicted using the Love-based theory: (#) transmitted power ratio,
(SPT/SP

f
T), for a predominantly #exural travelling wave; (s) transmitted power ratio, (SPT/SP

ex
T), for

a predominantly extensional travelling wave.
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4. THE EFFECT OF ROTARY INERTIA AND SHEAR DEFORMATION

It is known that shear deformation and rotary inertia e!ects become signi"cant for
straight beams as the wave length approaches the thickness of the beam [16], and for
cylindrical shells as the shell radius decreases [10]. Thus, the objective in this section is
to establish more complete equations for power transmission in a curved beam and to
show under what conditions these specialize to the simple bending equations presented in
section 3.

4.1. THE EFFECT OF ROTARY INERTIA

Rotary inertia e!ects are included by considering each element of the beam to have rotary
inertia (oI (L2//Lt2) ds) in addition to translational inertia (oS (L2w/Lt2) ds). Using FluK gge's
shell theory this leads to a modi"ed shear force equation [8]
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Substituting for the FluK gge-based bending moment resultant, M, and the rotation of the
normal to centreline during deformation, /, gives the modi"ed shear force resultant as
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A set of equations of motion for a curved beam which include the e!ect of rotary inertia are
presented in reference [8]. These equations are listed in Table 3 in terms of the
circumferential distance parameter, s. Assuming that harmonic wave motion for the
propagating waves is given by equations (4) and (5), the harmonic form of the equations of
motion is given in Table 4.

By inspection of the resultant force expressions listed in Table 2 it can be seen that the
bending moment and circumferential force expressions, when including rotary inertia
e!ects, are identical to the corresponding FluK gge-based expressions. However, the shear
force component now contains an additional rotary inertia term. Substituting the new shear
force resultant, equation (41), into equation (A15) gives the shear force component of power
transmission in the circumferential direction:
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For sinusoidal motion represented by equations (17) and (18) this becomes
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The time-averaged shear force component is found by substituting equation (43) into
equation (25) to give
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For a single harmonic wave the shear force component becomes
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The total power transmitted by a single elastic wave in the circumferential direction is given
by the sum of the modi"ed shear force component, equation (45), the previously derived
bending moment component, equation (36), and extensional component, equation (35).

4.2. THE EFFECT OF SHEAR DEFORMATION

If shear deformation is included then Kircho!'s hypothesis (normals remain normal) is
no longer valid, and the rotation of the normal to the centreline during bending, /, is no
longer de"ned by equation (2) but is now another independent variable related to the shear
angle, c. Due to shear, a rectangular element of the beam tends to go into a diamond shape
without rotation of the face, and the slope of the centreline is diminished by the shear
angle c:
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Figure 7 illustrates the shear deformation of a rectangular element.
The circumferential strain}displacement expressions are identical to those of the simple

bending theories. However, unlike the other theories considered, the substitution for the
rotation, /, is omitted, giving the circumferential strain}displacement in terms of tangential,
Figure 7. Shear deformation of a rectangular element: / is the rotation of normal to centreline; c is the shear
angle.
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u, radial, w, and rotational, /, displacements:
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Substituting this equation into the circumferential stress}strain relation, the circumferential
stress}displacement equation is obtained:
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Unlike simple bending theories, where the transverse shear strain, c
sr{

is negligible, the
transverse shear strain is now related to the shear angle, c:
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Using equation (46) this can be expressed in terms of displacements u, w and /:
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Substituting this into the shear stress}strain expression gives the shear stress}displacement
equation
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By integrating the stresses across the beam thickness, the circumferential force, bending
moment, and shear force resultant are obtained [8]:
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where i is the Timoshenko shear coe$cient, whose value depends upon the shape of the
cross-section.

A set of equations of motion for a curved beam which includes the e!ect of shear
deformation is presented in reference [8]. These equations are listed in Table 3 in terms of
the circumferential distance parameter, s. For sinusoidal motion assume that the tangential
and radial displacement are given as before by equations (4) and (5). In addition, let the
rotation of the normal to the centreline be de"ned by

/ (s, t)"CI exp[i(ut!ks)], (55)
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where CI is the complex wave amplitude. Substituting the harmonic displacement
expressions (4), (5) and (55) into the shear deformation-based equations of motion gives the
harmonic form of the equations of motion which are listed in Table 4.

Power transmission equations in the circumferential direction can be obtained in
a manner analogous to that given in Appendix A for the Love- and FluK gge-based theories.
First, consider the circumferential stress contribution equation (A3). Substituting the
circumferential stress}displacement equation, (48), and the tangential displacement,
equation (1a), into equation (A3) gives the power transmission due to circumferential stress:
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The integrands are expanded, and terms of degree greater than three discarded. The
integration is performed using the results of equations (A7a)}(A7d) to give the power
transmission contribution due to circumferential stress, which as before can be identi"ed as
consisting of extensional, P

e{
and bending moment, P

m{
components:
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The contribution to the power transmission from the transverse shear stress is obtained
from the product of the shear force resultant, equation (54), and the radial velocity, equation
(1b), which gives the shear force component of power transmission:
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Thus, the total power transmission in the circumferential direction is given by the sum of the
extensional, bending moment and shear force components.

For sinusoidal wave motion assume that the tangential and radial displacements are
de"ned, as before, by equations (17) and (18). In addition, let the rotation of the normal to
the centreline be de"ned by

/ (s, t)"Re MCI exp [i(ut!k
C
s)]N

"C cos[ut!k
C
s#h

C
], (60)

where h
C

is the relative phase angle between the rotational and extensional motions.
Substituting the harmonic displacements, equations (17), (18) and (60) into the extensional,
bending moment and shear force components derived above gives the power transmission
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due to harmonic wave motion:
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Time-averaged power transmission due to sinusoidal wave motion is found by summing
the harmonic power transmissions equations, (61)}(63), over one period using equation (25),
giving the extensional, bending moment and shear force components respectively:
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For a single harmonic wave, equations (64)}(66) become

SP
e
T
t
"

EkB2u
2 AS#

I

R2B!
EIkBCu

2R
cos[h

C
]!

EuBA

2R AS#
I

R2B sin[h
A
], (67)

SP
bm

T
t
"

EIkC2u
2

!

EIkBCu
2R

cos [h
C
]!

EIuAC

2R2
sin[h

C
!h

A
], (68)

SP
sf

T
t
"iGAS#

I

R2BC
kA2u

2
!

uBA

R
sin[h

A
]#

uAC

2
sin [h

A
!h

C
]D . (69)

Thus, the total time-averaged power transmission by a single harmonic wave in the
circumferential direction is given by the sum of the extensional, bending moment, and shear
force components.

4.3. RESULTS OF COMPUTER SIMULATION

To investigate the e!ect of beam curvature upon wave motion the rotary inertia-based,
and shear deformation-based equations of motion were programmed in the same manner as
the Love- and FluK gge-based equations. The simulated beams studied has material
properties and physical dimensions identical to those investigated in section 2.

Solution of the rotary inertia equations of motion reveals that this assumption only
makes a di!erence to the wave motion in a curved beam at high frequency (when the wave
lengths approach the dimensions of the thickness of the beam). At lower frequencies both
the predominantly #exural wave and the predominantly extensional wave behave as
predicted by the Love- and FluK gge-based theories.

Solution of the shear deformation equations of motion for a curved beam show that three
types of elastic wave exist: the predominantly #exural and predominantly extensional waves
of simple bending theory and additionally a predominantly rotational wave related to the
shear angle. The relationships between wave number and frequency for these three wave
types are shown in Figure 8. The data are displayed using the same non-dimensional
frequency range and non-dimensional wave number range as used in Figure 4. It can be seen
in Figure 8 that both the predominantly extensional wave and the predominantly rotational
wave exhibit &&cut-on'' frequencies. As before, the predominantly extensional wave &&cuts-on''
when X"1)0, and for this particular beam the predominantly shear wave &&cuts-on'' at
X"20. For a straight beam the shear wave &&cut-on'' frequency is given in reference [5] as

uK/c
s
"1, where c

s
is the wave speed of shear waves in a straight beam, i.e., c

s
"JiG/o.

For a curved beam the &&cut-on'' frequency can be found, from the characteristic equation in
reference [8], to be when
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(1!(K2/R2)) D
1@2

. (70)

Thus, for the thickness-to-radius of curvature ratios considered in this study the curved
beam shear wave &&cut-on'' frequency is approximately the same value as for the straight
beam. Below the shear wave cut-on frequency the relationship between wave number and
frequency for the predominantly #exural wave and the predominantly extensional wave is
the same as that predicted by the Love- and FluK gge-based theories. However, the
predominantly #exural wave and the predominantly extensional wave will now contain
three wave components representing the #exural, extensional and rotational motion.



Figure 8. Non-dimensional wave number, kR, versus non-dimensional frequency, X"uR/c
0
, relationship for

a curved beam, with a thickness to radius ratio of ( 1
10

) predicted using the shear deformation-based theory: (#)
predominantly #exural travelling wave; (s) predominantly extensional travelling wave; (]) predominantly shear
travelling wave.

Figure 9. Transmitted power ratio, (SP
sd
T/SP

lv
T), versus non-dimensional frequency, X"uR/c

0
, relationship

for a curved beam with a thickness to radius ratio of ( 1
10

) predicted using the shear deformation and Love-based
theories: (#) transmitted power ratio for a predominantly #exural wave ratio; (s) transmitted power ratio for
a predominantly extensional wave.
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To investigate the e!ects of shear deformation upon time-averaged power transmission
the shear deformation-based equations (67)}(69) were programmed in MATLAB and the
simulated beams chosen to have the same dimensions and material properties as in the
earlier studies. Figure 9 shows the relationship between transmitted power ratio and
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frequency, shown using the same non-dimensional frequency range as Figure 6. For the
predominantly #exural wave the time-averaged power ratio is calculated by dividing the
power transmitted by a #exural wave as predicted by shear deformation-based theory by
the power transmitted by a #exural wave as predicted by the Love-based theory. Thus,

P
sd

P
lv

"

(67)#(68)#(69)

(32)#(33)#(34)
(71)

For the predominantly extensional wave the time-averaged power ratio is calculated by
substituting wave amplitude, phase angles and wave numbers for the predominantly
extensional wave into equation (71). Figure 9 shows this ratio, marked with &&o'' symbols,
plotted against non-dimensional frequency. It can be seen in Figure 9 that below the ring
frequency, uR/c

0
"1, this ratio is zero because there is no travelling extensional wave.

Above the ring frequency but below the shear wave cut-on frequency, X"20, this ratio is 1,
indicating that there is no di!erence between the shear deformation and Love-based
theories. However, above the shear wave cut-on frequency this ratio diverges from unity,
thus, indicating that higher order e!ects are important. Figure 9 also shows the transmitted
power ratio of the predominantly #exural wave (marked with &&#'' symbols). It can be seen
in Figure 9 that below the ring frequency this ratio is one, indicating that there is no
di!erence between the shear deformation and Love-based theories. Above the ring
frequency this ratio di!ers from unity, indicating that higher order e!ects are important.
This is not surprising since an analysis of &&corrected'' bending waves in a straight beam [16]
has shown that corrections for rotary inertia and shear deformation will have a 10%
di!erence on the propagation velocity, and hence power #ow, when the wavelength is less
than six times the thickness of the beam. For the curved beam used in the current study this
occurs when the non-dimensional frequency, X, is greater than 3)2. Power is also
transmitted by the predominantly rotational wave; however, this wave has a very high
&&cut-on'' frequency and is above the main frequency range of interest of this study. Hence,
the power transmitted by this wave is not shown.

5. SUMMARY AND DISCUSSION

This paper has presented expressions for vibrational power transmission in a curved
beam derived using four di!erent theories. Love-based equations include extension of the
centreline during bending motion, and were the "rst set of equations considered.
FluK gge-based equations also include centreline extensions and were the second set of
equations used. Corrections for rotary inertia and shear deformation produced the third
and fourth sets of equations respectively.

Using the governing equations for each theory, expressions have been derived for power
transmission along a curved beam which are given in terms of the centreline displacements.
By analogy with power transmission in a straight beam these equations are expressed in
terms of extensional, bending moment and shear force components. By assuming sinusoidal
wave motion, expressions have been developed which relate the time-averaged power
transmission to the amplitudes of the extensional, #exural and rotational displacements.

Expressions for structural intensity in other types of curved structure have already been
published; Pavic [12] has derived expressions for an arbitrarily shaped thin shell presented
in terms of generalized curvilinear co-ordinates. These can be reduced to equations
applicable to a curved beam by assuming that displacements occur in one plane only and
then converting to polar co-ordinates. With some manipulation, Love-based power
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transmission equations are obtained. Pavic has also derived expressions for structural
intensity in a circular cylindrical shell [11], which can be reduced to equations applicable to
a curved beam by assuming that there is no axial motion. With some rearrangement
FluK gge-based power transmission equations are obtained. For ease of reference the
equations for displacement, strain}displacement, stress}strain, and force resultants for each
theory are presented in Table 1 and 2. The equations of motion and their harmonic form are
presented in Table 3 and 4, whilst the equations for power transmission and time-averaged
power transmission are presented in Table 5 and 6.

For each theory the e!ect of curvature upon wave motion and power transmission was
investigated using beams with di!erent degrees of curvature. From the results of this study
vibrational power transmission in curved beams can be classi"ed into three di!erent
frequency regions whose limits depend upon the type of wave considered.

For the predominantly extensional wave the frequency regions are:

(i) below the ring frequency, X"1, where curvature e!ects are important;
(ii) above the ring frequency but below the shear wave cut-on frequency, uK/c

s
"1, where

the curved beam behaves essentially as a straight beam; and
(iii) above the shear wave cut-on frequency, where higher order e!ects are important.

For the predominantly #exural wave the frequency regions are:

(i) below the ring frequency, X"1, where curvature e!ects are important;
(ii) above the ring frequency but below the frequency where the wavelength is less than six

times the thickness of the beam. In this region the curved beam behaves essentially as
a straight beam; and

(iii) above the frequency where the wavelength is less than six times the thickness of the
beam. In this region higher order e!ects are important.
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APPENDIX A: DERIVATION OF POWER TRANSMISSION EQUATIONS USING
LOVE'S STRAIN}DISPLACEMENT EXPRESSION AND FLUG GGE'S

STRAIN}DISPLACEMENT EXPRESSION

Intensity in the circumferential direction of a curved beam is given by
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By integrating across the thickness, h, the power transmission per unit length is obtained:

P
s
"P

h@2

~h@2

I
s
dz ,

"P
h@2

~h@2
A!p

s

L;
Lt

!p
sr

L=
Lt Bdz. (A2)

Consider "rst the contribution due to the circumferential stress term of equation (A2):
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Substituting Love's strain}displacement equation into the circumferential stress}strain
equation gives the circumferential stress}displacement equation:
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Representing circumferential displacements of the material point in terms of displacements
at the centreline, equations (1) and (2), gives the circumferential velocity:
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Substituting the circumferential stress}displacement equation (A4) and the circumferential
velocity, equation (A5), into equation (A3) gives the power transmission per unit length due
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to circumferential stress:
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By expanding the integrands and discarding terms of degree greater than three, the
integrations can be carried out using the results
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Thus, for a curved beam of unit width, the power transmission per unit length due to
circumferential stress is
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For a strip beam of width, b, the cross-sectional area, S, and the second moment of area, I,
can be introduced to give the total power transmitted by the beam. By analogy with power
transmission in a straight beam an extensional and a bending moment component can be
identi"ed:
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Now consider the contribution to power transmission per unit length due to the
transverse shear stress term in equation (A2):
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The radial displacement, =, does not vary across the thickness of the beam, thus from
equation (1b) the radial velocity is
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Substituting the radial velocity into equation (A11) gives the power transmission per unit
length due to transverse shear stress:
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Although the transverse shear stress, p
sr{

is negligible, a non-vanishing shear resultant, Q,
can be de"ned as the integral across the thickness of the shear stress:

Q"P
h@2

~h@2

p
sr

dz. (A14)

Thus, the power transmission due to transverse shear stress is
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Substituting the Love-based expression for the shear force resultant, Q, gives an expression
which can be identi"ed as the shear force component of the power transmission:
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Thus, the total power transmission in the circumferential direction is given by the sum of the
extensional, bending moment and shear force components:
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To evaluate the power transmission using FluK gge's strain}displacement expression,
consider "rst the contribution due to the circumferential stress, equation (A3). Substituting
FluK gge's strain}displacement equation (3) into the circumferential stress}strain equation
gives FluK gge's stress}displacement equation:
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Substituting the circumferential stress equation (A18) and the circumferential velocity,
equation (A5), into equation (A3) gives the power transmission per unit length due to
circumferential stress:
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For a curved beam, z/R is less than unity, thus the quotient 1/(1#(z/R)) can be expanded as
a geometric series:
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For su$ciently small z/R this series can be truncated after terms of degree three.
Substituting the truncated series into equation (A19), the integrands are expanded and
terms of degree greater than three discarded. The integrations are then carried out using the
results (A7a)}(A7d) to give power transmission due to circumferential stress in a curved
beam of unit width as
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For a beam of width, b, an extensional and a bending moment component of energy #ow
can be identi"ed:
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The contribution to power transmission due to transverse shear stress can be evaluated
using equation (A15) and substituting the FluK gge-based expression for shear force resultant,
to give the shear force component of power transmission:
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Thus, the total power transmission in the circumferential direction is given by the sum of the
extensional, bending moment and shear force components.

APPENDIX B: NOMENCLATURE

A #exural wave amplitude
A

f
amplitude of #exural wave in a straight beam

B extensional wave amplitude
B
ex

amplitude of extensional wave in a straight bar
C rotational wave amplitude
E Young's modulus
G shear modulus
I second moment of area of cross-section of beam
I
s

structural intensity in circumferential direction
K radius of gyration
M bending moment on cross-section of beam
N circumferential force on cross-section of beam
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sThe term &&power #ow'', although not physically accurate, has gained widespread acceptance. In this paper the
term &&transmitted power'' is used to denote the power (in W) #owing through a beam, whilst the term &&intensity'' is
used to denote the power transmitted per unit area normal to the direction of propagation (in W/m2).

P transmitted powers
P
bm

bending moment component of transmitted power
P
e

extensional component of transmitted power
P
ex

power transmitted by extensional wave in a straight bar
P
f

power transmitted by #exural wave in a straight beam
P
s

transmitted power in circumferential direction
P
s1

transmitted power due to circumferential stress
P
sf

shear force component of transmitted power
Q shear force on cross-section of beam
R radius of curvature
S cross-sectional area of beam
¹ period of wave
; displacement of material point in circumferential direction
= displacement of material point in radial direction
b breadth (width) of beam
c
0

wavespeed of extensional waves in a straight bar
c
s

wavespeed of shear waves in a straight bar
d
s

length of elemental slice of curved beam
e
s

total circumferential strain
h thickness of beam
k wave number
k
A

#exural wave number
k
B

extensional wave number
k
C

rotational wave number
k
ex

wave number of extensional wave in straight bar
k
f

wave number of #exural wave in straight beam
r co-ordinate in radial direction
s co-ordinate in circumferential direction
t time
u displacement at centreline in circumferential direction
w displacement at centreline in radial direction
z co-ordinate of outward pointing normal

X non-dimensional frequency
b
s

bending strain
c shear angle
c
sr

transverse shear strain
e
r

radial strain
e
s

circumferential strain
h displacement at centreline in radians
h
A

relative phase angle between the #exural and extensional motions
h
C

relative phase angle between the rotational and extensional motions
i Timoshenko shear coe$cient
j wave length
j
ex

wave length of extensional waves in a straight bar
l the Poisson ratio
o density
p
r

radial stress
p
s

circumferential stress
p
sr

transverse shear stress
/ change in slope of normal to centreline during deformation
u radian frequency

Special symbols
ST

t
time average
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